Lecture 2: Quantum computation review

"I think that a particle must have a separate reality independent of measurements. That is, an electron has spin, location and so forth even when it is not being measured. I like to think the moon is there even if I am not looking at it."

- Albert Einstein
"...experiments have now shown that what bothered Einstein is not a debatable point but the observed behaviour of the real world."
- N. David Mermin

Contents

1 Linear Algebra 1
2 Basic quantum computation 6
2.1 Pure state quantum computation 6
2.1.1 Individual systems 6
2.1.2 Quantum gates 6
2.1.3 Composite quantum systems 7
2.1.4 Measurement 9
2.2 Mixed state quantum computation 10
2.2.1 Operations and measurements on mixed states 11

Introduction. In Lecture 1, we reviewed the basics of classical complexity theory, including Turing machines, P, NP, reductions, and NP-completeness. We now move to the quantum realm and review the basics of quantum computation. Again, we shall move rather quickly, as a beginning background in quantum computation is assumed for this course.

1 Linear Algebra

In this course, we shall discuss quantum computation exclusively from a finite-dimensional linear algebraic perspective. For this, we begin with a quick review of linear algebraic terminology and definitions.

We denote d-dimensional complex column vectors $|\psi\rangle \in \mathbb{C}^{d}$ using Dirac notation, i.e. as

$$
|\psi\rangle=\left(\begin{array}{c}
\psi_{1} \tag{1}\\
\vdots \\
\psi_{d}
\end{array}\right)
$$

for $\psi_{i} \in \mathbb{C}$. The term $|\psi\rangle$ is read "ket ψ ". Recall also that a complex number $c \in \mathbb{C}$ can be written in two equivalent ways: Either as $c=a+b i$ for $a, b \in \mathbb{R}$ and $i=\sqrt{-1}$, or in its polar form as $c=r e^{i \theta}$ for $r \in \mathbb{R}$ and $\theta \in[0,2 \pi)$. The complex conjugate of c is $c=a-b i$, or equivalently $c=r e^{-i \theta}$.

Exercise. The magnitude or "length" of $c \in \mathbb{C}$ is given by $|c|=\sqrt{c c^{*}}$. What is the magnitude of $e^{i \theta}$ for any $\theta \in \mathbb{R}$? How about the magnitude of $r e^{i \theta}$?

The conjugate transpose of $|\psi\rangle$ is given by

$$
\begin{equation*}
\langle\psi|=\left(\psi_{1}^{*}, \psi_{2}^{*}, \ldots, \psi_{d}^{*}\right) \tag{2}
\end{equation*}
$$

where note $\langle\psi|$ is a row vector. The term $\langle\psi|$ is pronounced "bra ψ ". This allows us to define how much two vectors "overlap" via the inner product function, defined as $\langle\psi \mid \phi\rangle=\sum_{i=1}^{d} \psi_{i}^{*} \phi_{i}$, which satisfies $(\langle\psi \mid \phi\rangle)^{*}=\langle\phi \mid \psi\rangle$. The "length" of a vector $|\psi\rangle$ can then be quantified by measuring the overlap of $|\psi\rangle$ with itself, which yields the Euclidean norm, $\||\psi\rangle \|_{2}=\sqrt{\langle\psi \mid \psi\rangle}$.

Exercise. Let $|\psi\rangle=\frac{1}{\sqrt{2}}(1, i)^{T} \in \mathbb{C}^{2}$, where T denotes the transpose. What is $\langle\psi|$? How about $\||\psi\rangle \|_{2}$?
Orthonormal bases. A set of vectors $\left\{|\psi\rangle_{i}\right\} \subseteq \mathbb{C}^{d}$ is orthogonal if for all $i \neq j,\left\langle\left.\psi\right|_{i} \mid \psi\right\rangle_{j}=0$, and orthonormal if $\left\langle\left.\psi\right|_{i} \mid \psi\right\rangle_{i}=\delta_{i j}$. Here, $\delta_{i j}$ is the Kroenecker delta, whose value is 1 if $i=j$ and 0 otherwise. For the vector space \mathbb{C}^{d}, which has dimension d, it is necessary and sufficient to use d orthonormal vectors in order to form an orthonormal basis.

One of the most common bases we use is the computational or standard basis, defined for \mathbb{C}^{d} as

$$
|0\rangle=\left(\begin{array}{c}
1 \tag{3}\\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right) \quad|1\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right) \quad \cdots \quad|d-1\rangle=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Since $\{|0\rangle,|1\rangle, \ldots,|d-1\rangle\}$ is an orthonormal basis, any unit vector $|\psi\rangle \in \mathbb{C}^{d}$ can be written as $|\psi\rangle=$ $\sum_{i=0}^{d-1} \alpha_{i}|i\rangle$ for $\alpha_{i} \in \mathbb{C}$ satisfying the normalization condition $\||\psi\rangle \|_{2}=1$.

Exercise. What does $\||\psi\rangle \|_{2}=1$ mean in terms of a condition on the amplitudes α_{i} ?
Linear maps and matrices. In this course, maps $\Phi: \mathbb{C}^{d} \mapsto \mathbb{C}^{d}$ will typically be linear, meaning they satify for any $\sum_{i} \alpha_{i}\left|\psi_{i}\right\rangle \in \mathbb{C}^{d}$ that $\Phi\left(\sum_{i} \alpha_{i}\left|\psi_{i}\right\rangle\right)=\sum_{i} \alpha_{i} \Phi\left(\left|\psi_{i}\right\rangle\right)$. The set of linear maps from vector space \mathcal{X} to \mathcal{Y} is denoted $\mathcal{L}(\mathcal{X}, \mathcal{Y})$. For brevity, we use shorthand $\mathcal{L}(\mathcal{X})$ to mean $\mathcal{L}(\mathcal{X}, \mathcal{X})$.

Recall that linear maps have a matrix representation. A $d \times d$ matrix A is a two-dimensional array of complex numbers whose (i, j) th entry is denoted $A(i, j) \in \mathbb{C}$ for $i, j \in[d]$. To represent a linear map $\Phi: \mathbb{C}^{d} \mapsto \mathbb{C}^{d}$ as a $d \times d$ matrix A_{Φ}, we use its action on a basis for \mathbb{C}^{d}. Specifically, define the i th column of A_{Φ} as $\Phi(|i\rangle)$ for $\{|i\rangle\}$ the standard basis for \mathbb{C}^{d}, or

$$
\begin{equation*}
A_{\Phi}=[\Phi(|0\rangle), \Phi(|1\rangle), \ldots, \Phi(|d-1\rangle)] . \tag{4}
\end{equation*}
$$

In this course, we use both the matrix and linear map views interchangeably.
Exercise. Consider the linear map $\Phi: \mathbb{C}^{2} \mapsto \mathbb{C}^{2}$ with action $\Phi(|0\rangle)=|1\rangle$ and $\Phi(|1\rangle)=|0\rangle$. What is the 2×2 complex matrix representing Φ ?

Exercise. Given any $d \times d$ matrix A, what is $A|i\rangle$ for $|i\rangle \in \mathbb{C}^{d}$ a standard basis state?
The product $A B$ of two $d \times d$ matrices A and B is also a $d \times d$ matrix with entries $A B(i, j)=$ $\sum_{k=1}^{d} A(i, k) B(k, j)$. Note that unlike for scalars, for matrices it is not always true that $A B=B A$. In the special case where $A B=B A$, we say A and B commute.

Exercise. Do the following Pauli X and Z matrices commute:

$$
X=\left(\begin{array}{cc}
0 & 1 \tag{5}\\
1 & 0
\end{array}\right) \quad \text { and } \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ?
$$

The image of a matrix A is the set of all possible output vectors under the action of A, i.e. $\operatorname{Im}(A):=$ $\left\{|\psi\rangle \in \mathbb{C}^{d}| | \psi\right\rangle=A|\phi\rangle$ for some $\left.|\phi\rangle \in \mathbb{C}^{d}\right\}$. The rank of A is the dimension of its image, i.e. $\operatorname{dim}(\operatorname{Im}(A))$. The set of all vectors sent to zero by A is called its null space, i.e. $\left.\operatorname{Null}(A):=\left\{|\psi\rangle \in \mathbb{C}^{d}|A| \psi\right\rangle=0\right\}$. The Rank-Nullity Theorem says that these two spaces are related via $\operatorname{dim}(\operatorname{Null}(A))+\operatorname{dim}(\operatorname{Im}(A))=d$.

Exercise. Is the null space of matrix Z from Equation non-empty? What is $\operatorname{rank}(Z)$?
Matrix operations. We will frequently apply the complex conjugate, transpose and adjoint operations to matrices in this course; they are defined, respectively, as

$$
\begin{equation*}
A^{*}(i, j)=(A(i, j))^{*} \quad A^{T}(i, j)=A(j, i) \quad A^{\dagger}=\left(A^{*}\right)^{T} \tag{6}
\end{equation*}
$$

Note that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$, and similarly for the transpose.
The trace is a linear map $\operatorname{Tr}: \mathcal{L}\left(\mathbb{C}^{d}\right) \mapsto \mathbb{C}$ summing the entries on the diagonal of A, i.e. $\operatorname{Tr}(A)=$ $\sum_{i=1}^{d} A(i, i)$. A wonderful property of the trace is that it is cyclic, i.e. $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)$.

Exercise. In a previous exercise, you showed that X and Z do not commute. What is nevertheless true about $\operatorname{Tr}(X Z)$ versus $\operatorname{Tr}(Z X)$?

Outer products. Whereas the inner product mapped a pair of vectors $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}$ to a scalar, the outer product produces a $d \times d$ matrix $|\psi\rangle\langle\phi| \in \mathcal{L}\left(\mathbb{C}^{d}\right)$. For example,

$$
|0\rangle\langle 0|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \tag{7}\\
0 & 0
\end{array}\right) \quad \text { and } \quad|1\rangle\langle 0|=\binom{0}{1}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

More generally, the matrix $|i\rangle\langle j| \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ has a 1 at position (i, j) and zeroes elsewhere. Thus, any matrix $A \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ written in the computational basis can written $\sum_{i j} A(i, j)|i\rangle\langle j|$. We hence see that

$$
\begin{equation*}
\langle i| A|j\rangle=\langle i|\left(\sum_{i^{\prime} j^{\prime}} A\left(i^{\prime}, j^{\prime}\right)\left|i^{\prime}\right\rangle\left\langle j^{\prime}\right|\right)|j\rangle=\sum_{i^{\prime} j^{\prime}} A\left(i^{\prime}, j^{\prime}\right)\left\langle i \mid i^{\prime}\right\rangle\left\langle j \mid j^{\prime}\right\rangle=\sum_{i^{\prime} j^{\prime}} A\left(i^{\prime}, j^{\prime}\right) \delta_{i i^{\prime}} \delta_{j j^{\prime}}=A(i, j), \tag{8}
\end{equation*}
$$

where the third equality follows since $\{|i\rangle\}$ forms an orthonormal basis for \mathbb{C}^{d}. In other words, $\langle i| A|j\rangle$ simply rips out entry $A(i, j)$.

Exercise. Observe that X from Equation 5 can be written $X=|0\rangle\langle 1|+|1\rangle\langle 0|$. What is $\langle 0| X|0\rangle$? How about $\langle 0| X|1\rangle$? How can you rewrite $\operatorname{Tr}(X)$ in terms of expressions of the form $\langle i| X|j\rangle$?

Eigenvalues and eigenvectors. Given any matrix $A \in \mathcal{L}\left(\mathbb{C}^{d}\right)$, an eigenvector is any non-zero vector $|\psi\rangle \in \mathbb{C}^{d}$ satisfying the equation

$$
\begin{equation*}
A|\psi\rangle=\lambda|\psi\rangle \tag{9}
\end{equation*}
$$

for some $\lambda \in \mathbb{C}$ which is the corresponding eigenvalue.

Exercise. Show that $|+\rangle:=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $|-\rangle:=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ are eigenvectors of X from Equation (5). What are their respective eigenvalues?

A matrix $A \in\left\{\mathcal{L}\left(\mathbb{C}^{d}\right)\right\}$ is normal (i.e. satisfies $A A^{\dagger}=A^{\dagger} A$) if and only if it is unitarily diagonalizable, meaning it has spectral decomposition

$$
\begin{equation*}
A=\sum_{i=1}^{d} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right| \tag{10}
\end{equation*}
$$

where λ_{i} and $\left|\lambda_{i}\right\rangle$ are the eigenvalues and corresponding eigenvectors of A, respectively. Equivalently, there exists a unitary matrix (defined shortly) U such that $U A U^{\dagger}$ is diagonal. Note that if the eigenvalues λ_{i} are all distinct, then the eigenvectors $\left|\lambda_{i}\right\rangle$ are uniquely determined (and hence the spectral decomposition is unique). For normal operators, the eigenvectors form an orthonormal set. (Aside: It is worth noting that some non-normal matrices A may also be diagonalized, albeit with a similarity transformation more general than a unitary, i.e. by some invertible S such that $S A S^{-1}$ is diagonal. In this case, the eigenvectors of A are no longer guaranteed to be orthonormal, but they are linearly independent. In this course, we will typically take "diagonalizable" to mean "unitarily diagonalizable".)

Exercise. Suppose A is unitarily diagonalizable and has two matching eigenvalues, e.g. $\lambda_{1}=\lambda_{2}$. (We then say A is degenerate.) Prove that there are infinitely many eigenvectors $|\psi\rangle$ such that $A|\psi\rangle=\lambda_{1}|\psi\rangle$.

Using the spectral decomposition, we see that $\operatorname{Tr}(A)$ has a simple expression in terms of A 's eigenvalues for diagonalizable A, namely $\operatorname{Tr}(A)=\sum_{i} \lambda_{i}$. Let us quickly prove this claim:

$$
\begin{equation*}
\operatorname{Tr}(A)=\operatorname{Tr}\left(\sum_{i} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|\right)=\sum_{i} \lambda_{i} \operatorname{Tr}\left(\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|\right)=\sum_{i} \lambda_{i} \operatorname{Tr}\left(\left\langle\lambda_{i} \mid \lambda_{i}\right\rangle\right)=\sum_{i} \lambda_{i} \tag{11}
\end{equation*}
$$

Here, the second equality follows since the trace is linear, the third by the cyclic property of the trace, and the last since the eigenvectors $\left|\lambda_{i}\right\rangle$ are unit vectors.

Exercise. Prove that for diagonalizable $A, \operatorname{rank}(A)$ equals the number of non-zero eigenvalues of A.
Important classes of matrices. The following classes of matrices are ubiquitous in quantum information.

1. Unitary matrices: A matrix $U \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ is unitary if $U U^{\dagger}=I$ (equivalently, $U^{\dagger} U=I$). Thus, all unitary matrices are invertible. The set of unitary matrices acting on space \mathcal{X} is denoted $\mathcal{U}((X))$.

Exercise. Prove that any eigenvalue of a unitary matrix U is of form $e^{i \theta}$ for some $\theta \in \mathbb{R}$. Thus, unitaries are high-dimensional generalizations of unit complex numbers.
2. Hermitian matrices: A matrix $M \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ is Hermitian if $M=M^{\dagger}$. The eigenvectors of Hermitian matrices can always be taken to form an orthonormal basis (rather than just being linearly independent). The set of Hermitian matrices acting on space \mathcal{X} is denoted Herm (\mathcal{X}).

Exercise. Prove that any eigenvalue of a Hermitian matrix M is in \mathbb{R}. Thus, Hermitian matrices are high-dimensional generalizations of real numbers.
3. Positive (semi-)definite matrices: A Hermitian matrix with only positive (resp., non-negative) eigenvalues is called positive definite (resp., positive semidefinite). Thus, positive matrices generalize the positive (resp., non-negative) real numbers. We use $M \succ 0$ (resp., $M \succeq 0$) to specify that M is positive definite (resp. positive semidefinite). The set of positive semi-definite matrices acting on space \mathcal{X} is denoted $\operatorname{Pos}(\mathcal{X})$.

Exercise. Prove that the X and Z matrices are not positive semi-definite.
4. Orthogonal projections: A Hermitian matrix $\Pi \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ is an orthogonal projection (or projector for short) if $\Pi^{2}=\Pi$.

Exercise. Prove a Hermitian matrix $\Pi \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ is a projector if and only if all its eigenvalues are from set $\{0,1\}$. Thus, projectors are high-dimensional generalizations of bits.

Since a projector Π 's eigenvalues are 0 's and 1 's, its spectral decomposition must take the form $\Pi=$ $\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, where $\left\{\left|\psi_{i}\right\rangle\right\}$ are an orthonormal set. Conversely, summing any set of orthonormal $\left\{\left|\psi_{i}\right\rangle\right\}$ in this fashion yields a projector. A projector Π has rank 1 if and only if $\Pi=|\psi\rangle\langle\psi|$ for some $|\psi\rangle \in \mathbb{C}^{d}$.

Exercise. Let $\left\{\left|\psi_{i}\right\rangle\right\} \subseteq \mathbb{C}^{d}$ be an orthonormal set. Prove that $\Pi=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ is a projector.
As for what a projector intuitively does - for any projector $\Pi=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ and vector $|\phi\rangle$,

$$
\Pi|\phi\rangle=\left(\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)|\phi\rangle=\sum_{i}\left|\psi_{i}\right\rangle\left(\left\langle\psi_{i} \mid \phi\right\rangle\right)=\sum_{i}\left(\left\langle\psi_{i} \mid \phi\right\rangle\right)\left|\psi_{i}\right\rangle \in \operatorname{Span}\left(\left\{\left|\psi_{i}\right\rangle\right\}\right)
$$

where note $\left\langle\psi_{i} \mid \phi\right\rangle \in \mathbb{C}$. Thus, Π projects us down onto the span of the vectors $\left\{\left|\psi_{i}\right\rangle\right\}$.
Exercise. Consider three-dimensional vector $|\phi\rangle=\alpha|0\rangle+\beta|1\rangle+\gamma|2\rangle \in \mathbb{C}^{3}$ and $\Pi=|0\rangle\langle 0|+|1\rangle\langle 1|$. Compute $\Pi|\phi\rangle$, and observe that the latter indeed lies in the two-dimensional space $\operatorname{Span}(\{|0\rangle,|1\rangle\})$.

Operator functions. A key idea used repeatedly in quantum information is that of an operator function, or in English, "how to apply real-valued functions to matrices". To apply function $f: \mathbb{R} \mapsto \mathbb{R}$ to a Hermitian matrix $H \in \operatorname{Herm}\left(\mathbb{C}^{d}\right)$, we take the spectral decomposition $H=\sum_{i} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|$, and define $f(H)$ as

$$
H=\sum_{i} f\left(\lambda_{i}\right)\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|,
$$

i.e. we apply f to the eigenvalues of H. Why does this "work"? Let us look at the Taylor series expansion of f, which for e.g. $f=e^{x}$ is (the series converges for all x)

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \tag{12}
\end{equation*}
$$

The naive idea for defining e^{H} would be to substitute H in the right hand side of the Taylor series expansion of e^{x} :

$$
\begin{equation*}
e^{H}:=I+H+\frac{H^{2}}{2!}+\frac{H^{3}}{3!}+\cdots \tag{13}
\end{equation*}
$$

Indeed, this leads to our desired definition; that to generalize the function $f(x)=e^{x}$ to Hermitian matrices, we apply f to the eigenvalues of H, as you will now show.

Exercise. Let H have spectral decomposition $H=\sum_{i} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|$. Show that in Equation (13),

$$
e^{H}=\sum_{i} e^{\lambda_{i}}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|
$$

Exercise. Let $f(x)=x^{2}$. What is $f(X)$, for X the Pauli X operator? Why does this yield the same results as multiplying X by itself via matrix multiplication?

Exercise. Let $f(x)=\sqrt{x}$. For any pure state $|\psi\rangle \in \mathbb{C}^{d}$, define rank one density operator $\rho=|\psi\rangle\langle\psi|$. What is $\sqrt{\rho}$?

Exercise. What is \sqrt{Z} for Z the Pauli Z operator? Is it uniquely defined?

2 Basic quantum computation

We now review the basics of quantum computation. Recall here there are two successively more general notions of quantum states we utilize. The first, pure states, are the quantum analogue of "perfect knowledge" about our state; in the classical world, a "pure state" means your computer's state is described by a fixed string $x \in\{0,1\}^{n}$. The second, and more general notion, is that of mixed states, which model the notion of "uncertainty" about our state. The classical analogue here would be a computer whose state is described by some distribution over n-bit strings x.

2.1 Pure state quantum computation

We begin by discussing pure state quantum computation.

2.1.1 Individual systems

Recall that an arbitrary d-dimensional pure quantum state is represented by a unit vector

$$
|\psi\rangle=\sum_{i=0}^{d-1} \alpha_{i}|i\rangle \in \mathbb{C}^{d}
$$

If we interpret quantum mechanics literally (i.e. adopt the "Copenhagen interpretation" of quantum mechanics), we take $|\psi\rangle$ to mean that our quantum system is in all d basis states $|i\rangle$ simultaneously, with some appropriate amplitudes $\alpha_{i} \in \mathbb{C}$. Typically, in this course we will work with $d=2$, i.e. qubit systems.

2.1.2 Quantum gates

In the pure state setting, the set of allowable operations or gates on $|\psi\rangle \in \mathbb{C}^{d}$ is the set of $d \times d$ unitary matrices $U \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ (i.e. $U U^{\dagger}=U^{\dagger} U=I$). In particular, this means pure-state quantum computation is fully reversible, since all gates have inverses.

You have already seen two of the three single-qubit Pauli matrices below, which are unitary. The fourth gate, H, is the Hadamard.

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Exercise. What classical gate does Pauli X simulate? (Hint: Look at the action of X on $|0\rangle$ and $|1\rangle$.)
Exercise. What is the action of Pauli Z on the standard basis? Give the spectral decomposition of Z.
Recall the Z gate allows us to inject a relative phase into a quantum state. For example,

$$
Z|+\rangle=Z\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{\sqrt{2}} Z|0\rangle+\frac{1}{\sqrt{2}} Z|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle=|-\rangle .
$$

By relative phase, we mean that only the amplitude on $|1\rangle$ was multiplied by phase $e^{i \pi}=-1$. If all the amplitudes in the state were instead multiplied by $e^{i \pi}$, we could simply factor out the $e^{i \pi}$ from the entire state - in this case, $e^{i \pi}$ is a global phase, which cannot be detected via experiment, and hence is ignored.

The Hadamard, on the other hand, allows us to create or destroy certain superpositions. Namely, $H|0\rangle=|+\rangle$ and $H|1\rangle=|-\rangle$, and $H|+\rangle=|0\rangle$ and $H|-\rangle=|1\rangle$. In other words, H is self-inverse.

Exercise. Verify that X, Y, Z, H are all self-inverse, e.g. the inverse of X is just X. What does this mean about the eigenvalues of X ? (Hint: Use the fact that the eigenvalues of any unitary must lie on the unit circle.)

In this course, we work with the quantum circuit model, which allows us to graphically depict gates:

These correspond to evolutions $X|\psi\rangle, H|\psi\rangle$, and $H X|\psi\rangle$, respectively. Each wire in such a diagram denotes a quantum system, and a box labelled by gate U depicts the action of unitary U. We think of time going from left to right; for the last circuit above, note that the X appears on the "left" in the circuit diagram but on the "right" in the expression $H X|\psi\rangle$; this is because X should be applied first to $|\psi\rangle$, then H.

Exercise. Which Pauli matrix does the following circuit simulate? (Hint: Use the spectral decomposition of X.)

2.1.3 Composite quantum systems

Thus far we have described single qudit systems. The mathematical formalism for describing the joint state for multiple qudits is the tensor product, $\otimes: \mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \mapsto \mathbb{C}^{d_{1} \times d_{2}}$. For input vectors $|\psi\rangle \in \mathbb{C}^{d_{1}},|\phi\rangle \in \mathbb{C}^{d_{2}}$, the (i, j)-th entry of their tensor product is $(|\psi\rangle \otimes|\phi\rangle)(i, j):=\psi_{i} \phi_{j}$, where recall ψ_{i} and ϕ_{j} are the i th and j th entries of $|\psi\rangle$ and $|\phi\rangle$, respectively. For example,

$$
\binom{a}{b} \otimes\binom{c}{d}=\left(\begin{array}{c}
a c \\
a d \\
b c \\
b d
\end{array}\right)
$$

It is crucial to note that the tensor product multiplies the dimensions of its input spaces. This is why classical simulations of quantum mechanics appear to require an exponential overhead.

Exercise. What is $|+\rangle \otimes|0\rangle$ (expressed in the standard basis)?
Exercise. What dimension do n-qubit states live in, i.e. what is the dimension of space $\left(\mathbb{C}^{2}\right)^{\otimes n}$?
The tensor product has the following properties for any $|a\rangle,|b\rangle \in \mathbb{C}^{d_{1}}$ and $|c\rangle,|d\rangle \in \mathbb{C}^{d_{2}}$:

$$
\begin{align*}
(|a\rangle+|b\rangle) \otimes|c\rangle & =|a\rangle \otimes|c\rangle+|b\rangle \otimes|c\rangle \tag{14}\\
|a\rangle \otimes(|c\rangle+|d\rangle) & =|a\rangle \otimes|c\rangle+|a\rangle \otimes|d\rangle \tag{15}\\
c(|a\rangle \otimes|c\rangle) & =(c|a\rangle) \otimes|c\rangle=|a\rangle \otimes(c|c\rangle) \tag{16}\\
(|a\rangle \otimes|c\rangle)^{\dagger} & =|a\rangle^{\dagger} \otimes|c\rangle^{\dagger}=\langle a| \otimes\langle c| \tag{17}\\
(\langle a| \otimes\langle c|)(|b\rangle \otimes|d\rangle) & =\langle a \mid b\rangle\langle c \mid d\rangle . \tag{18}
\end{align*}
$$

For brevity, we shall often drop the notation \otimes and simply write $|\psi\rangle \otimes|\phi\rangle=|\psi\rangle|\phi\rangle$.
Exercise. Using the properties above, prove that for orthonormal bases $B_{1}=\left\{\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle\right\}$ and $B_{2}=$ $\left\{\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle\right\}$ for \mathbb{C}^{2}, the set $\left\{\left|\psi_{0}\right\rangle \otimes\left|\phi_{0}\right\rangle,\left|\psi_{0}\right\rangle \otimes\left|\phi_{1}\right\rangle,\left|\psi_{1}\right\rangle \otimes\left|\phi_{0}\right\rangle,\left|\psi_{1}\right\rangle \otimes\left|\phi_{1}\right\rangle\right\}$ is an orthonormal basis for \mathbb{C}^{4}.

Quantum entanglement. Recall that while any pair of states $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}$ can be stitched together via the tensor product to obtain a d^{2}-dimensional state $|\psi\rangle \otimes|\phi\rangle \in \mathbb{C}^{d^{2}}$, the converse is not always true: Given any d^{2}-dimensional state $|\eta\rangle \in \mathbb{C}^{d^{2}}$, it is not always true that there exist $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}$ satisfying $|\eta\rangle=|\psi\rangle \otimes|\phi\rangle$. Such $|\eta\rangle$ are called entangled.

For pure bipartite (i.e. two-party) states, entanglement is easy to characterize fully via the Schmidt decomposition, which says that any bipartite state $|\eta\rangle \in \mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}$ can be written

$$
|\eta\rangle=\sum_{i=0}^{\min \left(d_{1}, d_{2}\right)-1} s_{i}\left|a_{i}\right\rangle\left|b_{i}\right\rangle,
$$

for non-negative Schmidt coefficients s_{i} and orthonormal bases $\left\{\left|a_{i}\right\rangle\right\}_{i=0}^{d_{1}}$ and $\left\{\left|b_{i}\right\rangle\right\}_{i=0}^{d_{2}}$ for $\mathbb{C}^{d_{1}}$ and $\mathbb{C}^{d_{2}}$, respectively. The Schmidt rank of $|\eta\rangle$ is its number of non-zero Schmidt coefficients. The canonical entangled two-qubit states are the Bell states

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \\
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|11\rangle \\
& \left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle \\
& \left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}|01\rangle-\frac{1}{\sqrt{2}}|10\rangle
\end{aligned}
$$

where we simplified notation by letting (e.g.) $|0\rangle|0\rangle=|00\rangle$.
Exercise. Prove the Bell states are an orthonormal basis for \mathbb{C}^{4}.
It is worth mentioning that while the Schmidt rank of a bipartite pure state $|\psi\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ yields an efficient ${ }^{1}$ test for entanglement in pure states, it is highly unlikely for there to be an efficient test for entanglement in mixed states. This is because determining whether a mixed state $\rho \in \mathcal{L}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$ is separable is (strongly) NP-hard. (Mixed states are reviewed in Section 2.2.)

Two-qubit quantum gates. Two qubit gates are either a tensor product of one-qubit gates, such as $X \otimes Z$ or $H \otimes I$, or a genuinely two-qubit gate. For the former, recall the tensor product acts on matrices as

The tensor product for matrices shares the properties of the tensor product for vectors, with the addition of two rules: $(A \otimes B)(C \otimes D)=A C \otimes B D$ and $\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B)$.

Exercise. What is $\operatorname{Tr}((X \otimes X)(X \otimes X))$?
Circuit diagrams for tensor products of unitaries are depicted below: We consider the cases of $X \otimes I, I \otimes Z$, and $H \otimes H$, respectively.
$|\psi\rangle-X$
$|\psi\rangle$
$|\psi\rangle-H$
$|\phi\rangle$ —
$|\phi\rangle-Z$
$|\phi\rangle-H$

[^0]Exercise. What is the circuit diagram for $Z \otimes Z$? What is $(X \otimes X)|0\rangle \otimes|1\rangle$? How about $(Z \otimes Z)|1\rangle \otimes|1\rangle$?
An important genuinely two-qubit gate is the controlled-NOT gate, denoted CNOT. The CNOT treats one qubit as the control qubit, and the other as the target qubit. It then applies the Pauli X gate to the target qubit only if the control qubit is set to $|1\rangle$. More precisely, the action of the CNOT on a two-qubit basis is given as follows, where qubit 1 is the control and qubit 2 is the target:

$$
\text { CNOT }|00\rangle=|00\rangle \quad \text { CNOT }|01\rangle=|01\rangle \quad \text { CNOT }|10\rangle=|11\rangle \quad \text { CNOT }|11\rangle=|10\rangle .
$$

Exercise. What is the matrix representation for CNOT?
The circuit diagram for the CNOT is given by

Exercise. What is $\operatorname{CNOT}\left|\Phi^{+}\right\rangle$for $\left|\Phi^{+}\right\rangle$the Bell state? Based on this, give a circuit diagram mapping $|00\rangle$ to the Bell state $\left|\Phi^{+}\right\rangle$.

2.1.4 Measurement

Recall that measuring or observing a quantum system allows us to extract classical information from the system.

The most basic type of measurement is a projective measurement, given by a set of projectors $B=\left\{\Pi_{i}\right\}_{i=0}^{m}$ such that $\sum_{i=0}^{m} \Pi_{i}=I$, where the latter condition is the completeness relation. If each Π_{i} is rank one, i.e. $\Pi_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, then we say B models a measurement in basis $\left\{\left|\psi_{i}\right\rangle\right\}$. Often, we shall measure in the computational basis for \mathbb{C}^{d}, which is specified by $B=\{|i\rangle\langle i|\}_{i=0}^{d-1}$ for standard basis vectors $|i\rangle \in \mathbb{C}^{d}$.

Exercise. Verify that $B=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$ is a projective measurement on \mathbb{C}^{2}.
Given a projective measurement $B=\left\{\Pi_{i}\right\}_{i=0}^{m} \subseteq \mathbb{C}^{d}$ and quantum state $|\psi\rangle \in \mathbb{C}^{d}$, recall the probability of obtaining outcome $i \in\{0, \ldots, m\}$ when measuring $|\psi\rangle$ with B is given by

$$
\operatorname{Pr}(\text { outcome } i)=\operatorname{Tr}\left(\Pi_{i}|\psi\rangle\langle\psi| \Pi_{i}\right)=\operatorname{Tr}\left(\Pi_{i}^{2}|\psi\rangle\langle\psi|\right)=\operatorname{Tr}\left(\Pi_{i}|\psi\rangle\langle\psi|\right)
$$

where the second equality follows by the cyclic property of the trace and the third since Π_{i} is a projector. Upon obtaining outcome i, our state $|\psi\rangle$ collapses to a state $\left|\psi^{\prime}\right\rangle$ consistent with this outcome, i.e.

$$
\left|\psi^{\prime}\right\rangle=\frac{\Pi_{i}|\psi\rangle}{\| \Pi_{i}|\psi\rangle \|_{2}}=\frac{\Pi_{i}|\psi\rangle}{\sqrt{\langle\psi| \Pi_{i} \Pi_{i}|\psi\rangle}}=\frac{\Pi_{i}|\psi\rangle}{\sqrt{\langle\psi| \Pi_{i}|\psi\rangle}}
$$

Exercise. Let $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \in \mathbb{C}^{2}$. Show that if we measure in the computational basis, i.e. using $B=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$, then the probabilities of obtaining outcomes 0 and 1 are $|\alpha|^{2}$ and $|\beta|^{2}$, respectively. What is the postmeasurement state $\left|\psi^{\prime}\right\rangle$ if outcome 0 is obtained?

The circuit symbol denoting a measurement of state $|\psi\rangle \in \mathbb{C}^{2}$ in the computational basis is:

2.2 Mixed state quantum computation

Thus far, we have discussed pure state computation, where we know precisely the quantum state in which our system is throughout the computation. We now review mixed state computation, for which we recall the notion of density operators.

Recall that a density operator ρ acting on \mathbb{C}^{d} is a $d \times d$ Hermitian matrix satisfying two properties: $\rho \succeq 0$ (ρ is positive-semidefinite) and $\operatorname{Tr}(\rho)=1$. By the former, ρ has spectral decomposition

$$
\rho=\sum_{i=1}^{m} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

with eigenvalues p_{i} and orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}$. One way to interpret ρ is via the following experiment: With probability p_{i}, we prepare pure state $\left|\psi_{i}\right\rangle$. This, in particular, means that any pure state $|\psi\rangle$ has density matrix $|\psi\rangle\langle\psi|$. Conversely, any rank one density operator by definition must be of form $\rho=|\psi\rangle\langle\psi|$ (why?), and hence represents a pure state $|\psi\rangle$. The set of density operators acting on \mathbb{C}^{d} is denoted $\mathcal{D}\left(\mathbb{C}^{d}\right)$.

Exercise. Prove that the eigenvalues $\left\{p_{i}\right\}$ of a density operator form a probability distribution.
Exercise. Write down the density operator $\rho=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$ and state vector $|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$. How do they differ?

Exercise. What is the density matrix for pure state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$?
The maximally mixed state. A special density matrix in $\mathcal{L}\left(\mathbb{C}^{d}\right)$ is the maximally mixed state $\rho=I / d$, which is the state of "maximum uncertainty". To see why, use the fact that for any orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$ for $\mathbb{C}^{d}, \sum_{i=1}^{d}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=I$. In other words, for any orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}, \rho$ represents the following experiment: Pick state $\left|\psi_{i}\right\rangle$ with probability $1 / d$, and prepare $\left|\psi_{i}\right\rangle$. Since this holds for any basis, ρ gives us absolutely no information about which state $|\psi\rangle$ we actually have.

The partial trace operation. Density operators arise naturally in answering the question: For any entangled state $|\psi\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$, how do we describe the marginal state of $|\psi\rangle$ on (say) qubit 1? There is no way to answer this via pure states, since $|\psi\rangle$ is not a product state, and hence does not factorize. Instead, we require a density matrix to describe the state of qubit 1 , and the correct procedure for obtaining it is the partial trace operation, which we now discuss.

For a bipartite density operator ρ system on parties A and B, the partial trace over B "discards" system B, and hence has signature $\operatorname{Tr}_{B}: \mathcal{L}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right) \mapsto \mathcal{L}\left(\mathbb{C}^{d_{1}}\right)$. To formally define Tr_{B}, recall that we may write the (usual) trace of $\rho \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ as $\operatorname{Tr}(\rho)=\sum_{i} \rho(i, i)=\sum_{i=1}^{d}\langle i| \rho|i\rangle$. The partial trace over B applies this formula only to system B, i.e. for $\rho \in \mathcal{L}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$,

$$
\operatorname{Tr}_{B}(\rho)=\sum_{i=1}^{d_{2}}\left(I_{A} \otimes\langle i|\right) \rho\left(I_{A} \otimes|i\rangle\right)
$$

Exercise. What should $\operatorname{Tr}_{B}(I / 4)$ intuitively be? Compute $\operatorname{Tr}_{B}(I / 4)$ to check your guess.
Exercise. More generally, prove that $\operatorname{Tr}_{B}\left(\rho_{A} \otimes \rho_{B}\right)=\rho_{A} \cdot \operatorname{Tr}\left(\rho_{B}\right)=\rho_{A}$ for density matrices ρ_{A}, ρ_{B}.
Example 1: Separable states. We have said that a pure state $|\psi\rangle \in \mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}$ is not entangled, or separable, if and only if $|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$ for some $\left|\psi_{1}\right\rangle \in \mathbb{C}^{d_{1}}$ and $\left|\psi_{2}\right\rangle \in \mathbb{C}^{d_{2}}$. This idea extends to the setting of mixed states as follows: A bipartite density matrix $\rho \in \mathcal{L}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$ is unentangled or separable if

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|,
$$

for some (possibly non-orthogonal) sets of vectors $\left\{\left|\psi_{i}\right\rangle\right\} \subseteq \mathbb{C}^{d_{1}}$ and $\left\{\left|\phi_{i}\right\rangle\right\} \subseteq \mathbb{C}^{d_{2}}$, and where the $\left\{p_{i}\right\}$ form a probability distribution. In other words, ρ is a probabilistic mixture of pure product states. An example of a separable state is

$$
\begin{equation*}
\rho=\frac{1}{2}|0\rangle\langle 0| \otimes|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| \otimes|1\rangle\langle 1| . \tag{19}
\end{equation*}
$$

Since the partial trace is a linear map, and since we know that $\operatorname{Tr}_{B}\left(\rho_{1} \otimes \rho_{2}\right)=\rho_{1} \cdot \operatorname{Tr}\left(\rho_{2}\right)=\rho_{1}$ for density matrices ρ_{1}, ρ_{2}, computing the partial trace of ρ for separable states is simple:
$\operatorname{Tr}_{B}\left(\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)=\sum_{i} p_{i} \operatorname{Tr}_{B}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \cdot \operatorname{Tr}\left(\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$.
Exercise. What is $\operatorname{Tr}_{B}(\rho)$ for ρ from Equation (19)?
Example 2: Pure entangled states. We compute the single-qubit state of the Bell state $\left|\Phi^{+}\right\rangle$on qubit 1:

$$
\begin{aligned}
\operatorname{Tr}_{B}\left(\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|\right) & =\frac{1}{2} \operatorname{Tr}_{B}(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|) \\
& =\frac{1}{2}|0\rangle\langle 0| \operatorname{Tr}(|0\rangle\langle 0|)+\frac{1}{2}|0\rangle\langle 1| \operatorname{Tr}(|0\rangle\langle 1|)+\frac{1}{2}|1\rangle\langle 0| \operatorname{Tr}(|1\rangle\langle 0|)+\frac{1}{2}|1\rangle\langle 1| \operatorname{Tr}(|1\rangle\langle 1|) \\
& =\frac{1}{2} I
\end{aligned}
$$

where we have used the linearity of the partial trace. Thus, the reduced state on qubit 1 for the Bell state is maximally mixed, i.e. it is a completely random state about which we have zero information.

Exercise. Show that $\operatorname{Tr}_{A}\left(\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|\right)=I / 2$.

2.2.1 Operations and measurements on mixed states

We close this lecture by generalizing our discussion on gates and measurements from the pure state setting to mixed states.

Composite systems. If ρ_{A} and ρ_{B} are density operators, then $\rho_{A} \otimes \rho_{B}$ is a density operator.

Exercise. Prove the claim above. (Hint: The slightly trickier part is to show that the tensor product preserves positivity - use the spectral decomposition for this.)

Unitary operations. For density operator $\rho \in \mathcal{D}\left(\mathbb{C}^{d}\right)$ and unitary $U \in \mathcal{U}\left(\mathbb{C}^{d}\right)$, the action of U on ρ is given by $U \rho U^{\dagger}$.

Exercise. What is the action of any unitary $U \in \mathcal{U}\left(\mathbb{C}^{d}\right)$ on the maximally mixed state, $\rho=I / d$?
Measurements. For projective measurement $B=\left\{\Pi_{i}\right\}_{i=0}^{m} \subseteq \mathcal{L}\left(\mathbb{C}^{d}\right)$ applied to density operator $\rho \in$ $\mathcal{D}\left(\mathbb{C}^{d}\right)$, the probability of outcome i and postmeasurement state $\rho^{\prime} \in \mathcal{D}\left(\mathbb{C}^{d}\right)$ upon obtaining outcome i are

$$
\operatorname{Pr}(\text { outcome } i)=\operatorname{Tr}\left(\Pi_{i} \rho\right) \quad \text { and } \quad \rho^{\prime}=\frac{\Pi \rho \Pi}{\operatorname{Tr}\left(\Pi_{i} \rho\right)}
$$

Exercise. Show that the following important identity holds: For any bipartite state $\rho_{A B}$ and matrix M_{B} acting on B, it holds that

$$
\operatorname{Tr}\left(\rho_{A B} I_{A} \otimes M_{B}\right)=\operatorname{Tr}\left(\operatorname{Tr}_{A}\left(\rho_{A B}\right) M_{B}\right)
$$

In other words, measuring just system B of a joint state $\rho_{A B}$ is equivalent to first discarding system A of $\rho_{A B}$, followed a measurement on the reduced state on system B. Does this agree with your intuition of how a local measurement should behave?

[^0]: 1 "Efficient" here means the test can be computed in time polynomial in the dimension, d, of the system.

